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This paper presents a theory for the collapse of the edge zonal shear layer, as observed at the

density limit at low b. This paper investigates the scaling of the transport and mean profiles with

the adiabaticity parameter a, with special emphasizes on fluxes relevant to zonal flow (ZF)

generation. We show that the adiabaticity parameter characterizes the strength of production of

zonal flows and so determines the state of turbulence. A 1D reduced model that self-consistently

describes the spatiotemporal evolution of the mean density �n, the azimuthal flow �vy, and the turbu-

lent potential enstrophy e ¼ hð~n �r2 ~/Þ2=2i—related to fluctuation intensity—is presented.

Quasi-linear analysis determines how the particle flux Cn and vorticity flux P ¼ �vyr2vy þPres

scale with a, in both hydrodynamic and adiabatic regimes. As the plasma response passes from adi-

abatic (a> 1) to hydrodynamic (a< 1), the particle flux Cn is enhanced and the turbulent viscosity

vy increases. However, the residual flux Pres—which drives the flow—drops with a. As a result,

the mean vorticity gradient r2�vy ¼ Pres=vy—representative of the strength of the shear—also

drops. The shear layer then collapses and turbulence is enhanced. The collapse is due to a decrease

in ZF production, not an increase in damping. A physical picture for the onset of collapse is pre-

sented. The findings of this paper are used to motivate an explanation of the phenomenology of low

b density limit evolution. A change from adiabatic (a ¼ k2
z v

2
th=ðjxj�eiÞ > 1) to hydrodynamic

(a< 1) electron dynamics is associated with the density limit. Published by AIP Publishing.
https://doi.org/10.1063/1.5030345

I. INTRODUCTION

Drift wave (DW) turbulence is one of the fundamental

issues in magnetically confined plasmas and continues to be

a subject of interest for many experimental, theoretical, and

numerical studies.1,2 Driven by radial density gradients, drift

wave turbulence enhances particle and thermal transport and

increases the loss of particles and heat from fusion devices.

One mechanism that regulates DW fluctuations is the

self-generation of sheared zonal flows (ZFs) by turbulent

Reynolds stresses. These flows decorrelate turbulent eddies

by shearing, thus allowing for energy transfer between dispa-

rate scales of the plasma.3,4 ZFs are therefore often linked to

L–H transition and internal transport barrier (ITB) forma-

tion.5 Many models describing the regulations of DWs by

ZFs have been proposed, so much so that the problem is now

referred to as DW/ZF turbulence.

In another vein, there is evidence to suggest that ZFs

collapse when the plasma density approaches the Greenwald

density limit nG in the L-mode.6,7 This limit is an operational

bound on the plasma density and represents the maximum

attainable density before the plasma develops strong MHD

activity.8 Increasing the density to and above nG leads

ultimately to degradation of particle confinement and

sometimes—but not always—disruption. A symptomatic

series of phenomena are frequently manifested at the density

limit. These include, but are not limited to: edge cooling,

multifaceted asymmetric radiation from edge (MARFE), cur-

rent shrinkage, and weakening of the edge shear E�B
layers. Studies of the long range correlation (LRC)6 of edge

turbulence revealed a drop in LRC as n! nG, suggesting a

weakening of turbulence driven zonal flows as the density

limit is approached. A recent experiment in the HL-2A toka-

mak7 showed that as �n approaches nG, the edge shear flow

collapses. This is accompanied by an enhancement of the

turbulent particle flux near the separatrix as the plasma den-

sity increases in these ohmic L-mode discharges. Cooling of

the edge plasma and a decrease in the Reynolds force respon-

sible for driving the zonal flow were also observed as �n=nG

increased. Notably, there was a significant decrease in the

adiabaticity parameter a ¼ k2
z v

2
th=ð�eijxjÞ from 3 to 0.5, as �n

was increased. Here, jxj represents the frequency of the DW

unstable mode. In a relevant and related vein (though not

directly concerned with density limits), Schmid et al.
deduced the weakening of zonal flow production at high col-

lisionality. In that study, a direct experimental verification of

the importance of collisionality for mesoscale (i.e., ZF)

structure formation was reported, and a decrease in both
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nonlinear energy transfer and the zonal flow contribution to

the spectrum was observed.

A conventional approach is to attribute these observa-

tions to an increase in the plasma collisionality with �n and to

an increase in the damping of the ZFs.8,9 Increasing the

plasma density boosts the collisional damping of zonal flows,

thus inhibiting the self-regulation of turbulence.10–12 As a

result, transport of particles and heat is enhanced and plasma

confinement degrades. Alternatively, another approach links

these observations to the development of additional linear

instabilities, such as resistive ballooning modes, in the edge

of the tokamak.13–15 The onset of resistive ballooning modes

is linked to k2
z v

2
th=ð�eijxjÞ dropping below unity. These addi-

tional instabilities are thought to enhance transport and lead

to further deterioration of the plasma confinement. To this

end, we note however the low values in b achieved in the

HL-2A experiment mentioned above, where 0:01 < b
< 0:02.

Motivated by the experimental observations, we present

a model that investigates turbulence and the collapse of the

plasma edge shear layer in the hydrodynamic electron limit.

Specifically, we present a theory for the evolution of turbu-

lence and mean profiles (including flows) as the adiabaticity

parameter a decreases below unity that is, as the plasma

response passes from the adiabatic limit (a� 1) to the

hydrodynamic limit (a� 1). Interestingly enough, findings

of this paper are easily applicable to the density limit experi-

ments, since a ¼ k2
z v

2
th=ðjxj�eiÞ � T5=2

e =�n (for jxj fixed). For

jxj � jx?j, as for drift wave turbulence, a � T2
e=�n (for khqs

fixed). For the parameters of the HL-2A experiments, it is

quite unlikely that resistive ballooning modes are excited.

Thus, we work within the framework of a drift wave model.

A particularly simple model proposed by Hasegawa and

Wakatani describes the dynamics of two-dimensional (2D)

edge drift wave turbulence in a collisional plasma in the

presence of a constant magnetic field. This generic system of

equations describes the excitation and damping of unstable

modes in terms of a few parameters related to plasma colli-

sionality, leading to a stationary turbulence level without

an external drive. In particular, the Hasegawa-Wakatani

(HW) system of equations remains a valid model for edge

turbulence dynamics at modest b. Although multiple studies

investigating the characteristics of turbulence in the hydro-

dynamic limit have been published, no theoretical or physi-

cal explanation of why the shear flow collapses and/or why

drift wave turbulence is enhanced for a< 1 was presented.

Recently, Schmid et al.16 did present an experimental study

of this subject. In fact, most studies of ZF behavior in the

hydrodynamic electron regime simply appeal to numerical

results that show strong turbulence and weak zonal flows in

the hydrodynamic limit,17–20 and verify the usual power laws

of turbulence energy in 2D for this limit.21

This paper addresses these questions by presenting a

simple reduced description for transport enhancement

and weakening of the edge shear layer in the hydrodynamic

electron limit. The model is derived from the Hasegawa-

Wakatani (HW) equations for collisional drift waves, and

self-consistently studies space and time evolution of the

mean density �n, mean azimuthal flow �vy, and turbulent

potential enstrophy e. The model determines the role of the

Reynolds stress h~vx~vyi in the feedback loop between flows

and turbulence and gives additional insight into the DW/ZF

relation in the hydrodynamic electron limit. Quasi-linear

analysis shows that both the particle flux Cn and the turbulent

viscosity vy are enhanced as a decreases. However, the resid-

ual vorticity stress Pres, which accelerates the flow, is

reduced as a increases. The mean vorticity gradient equal to

Pres=vy is then reduced, and the edge shear layer collapses.

As a result, transport of particles and heat increases. These

findings are relevant to the density limit experiment, as

a / T2
e=�n. When �n increases, a decreases, and Pres=vy is

reduced. The plasma production of zonal flows declines and

turbulence and transport increase. Thermal and particle

transport increases, thereby triggering cooling of the edge

plasma, in part because of inward turbulence spreading. For

constant pressure, a drop in plasma temperature Te leads to a

further increase in the density and feedback loop between Te

and �n forms.

We give a physical explanation of zonal flow collapse

based on energy and momentum density flux behavior in the

adiabatic and hydrodynamic regimes. In the adiabatic

regime, the momentum flux scales as h~vx~vyi / �hkrkhi,
where kr and kh are the radial and azimuthal wavenumbers,

respectively. The group velocity vgr, at which the wave

energy density propagates hvgrei, scales as vgr / �hkrkhivd,

where the electron diamagnetic velocity vd < 0. With

vgr> 0, the relation between the flux of wave energy density

and momentum implies a counter-flow spin up, i.e., an

incoming wave momentum flux occurs for an outgoing wave

energy density flux as shown in Fig. 1. Alternatively put, a

system of drift wave—zonal flow turbulence naturally tends

to converge zonal momentum into regions of wave excita-

tion, from which wave energy radiates. This promotes the

production of zonal flows in the adiabatic regime. In the

FIG. 1. Outgoing wave energy flux

and incoming momentum flux from/to

perturbation in the adiabatic regime.
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hydrodynamic limit however, the group velocity does not

scale directly with kh. Thus, the strong link between the two

fluxes is broken, and so the familiar pattern of zonal flow

amplification in regions from which wave energy radiates no

longer holds. The familiar tilt-and-stretch mechanism does

not apply. This simple idea explains why zonal flows are not

produced in the hydrodynamic regime. We comment here

that the topic of density limits is an extremely complex and

broad one, involving many different physical processes.9

The scenario analyzed here is relevant but not universal. Other

explanations are possible. In particular, the physics of H-mode

density limits, which are necessarily coupled to the H ! L
back transition, requires significant further consideration.

The rest of this paper is organized as follows: Sec. II

gives the linear response analysis of the basic Hasegawa-

Wakatani system, as well as solution of the DW dispersion

relation in both the adiabatic and hydrodynamic limits.

Section III introduces the reduced model used to describe the

evolution of the three fields: �n; �vy, and e. In Sec. IV, we cal-

culate the expressions for the particle flux, the vorticity flux,

and the Reynolds work in both adiabatic and hydrodynamic

limits. The latter reflects the potential enstrophy exchange

between fluctuations and mean flow. The model is then sim-

plified to a predator/prey model by slaving the expression for

e in the equations for �n and �vy in Sec. V. Section VI gives a

physical argument as to why zonal flow formation is weak in

the hydrodynamic limit. Variations of the mean vorticity gra-

dient Pres=vy, as well as changes in the scaling of the vortic-

ity flux h~vxr2
?/i, are examined, in order to characterize the

mesoscopic plasma response as a decreases. The drop in

zonal flow drive is reconciled with the persistence of poten-

tial vorticity (PV) mixing in the hydrodynamic limit. Section

VII interprets the experimental observations obtained in den-

sity limit experiments and in studies of edge turbulence at

high collisionality from the perspective of the collapse of

ZFs in the hydrodynamic electron limit. A scenario linking

shear layer collapse to the density limit is suggested. Finally,

conclusions and future work are discussed in Sec. VIII.

II. BASIC SYSTEM AND LINEAR STABILITY ANALYSIS

In a box of dimensions: 0 � x � Lx; 0 � y � Ly;
0 � z � Lz, the equations for the density n and vorticity r2/
in a nonuniform plasma with density n0ðxÞ and constant

magnetic field B ¼ Bẑ are22

dn

dt
¼ � v2

th

�ei
r2
kð/� nÞ þ D0r2n; (1a)

dr2/
dt
¼ � v2

th

�ei
r2
kð/� nÞ þ l0r2ðr2/Þ: (1b)

Here, the fields are normalized as: n � n=n0; / � e/=Te;
t � xcit; length � length=qs; vth � vth=cs, and �ei � �ei=xci.

The average plasma density, the electron temperature, and

thermal velocity, as well as the plasma sound speed, are n0,

Te, vth, and cs, respectively. xci is the ion cyclotron fre-

quency, and qs ¼ cs=xci is the ion Larmor radius with tem-

perature Te. The collisional diffusion coefficients D0 and l0

dissipate energy at small scales by frictional drag through

forward energy cascade. The electron parallel diffusion rate

â ¼ �v2
thr2

k=�ei ¼ k2
z v

2
th=�ei couples the vorticity fluctuations

to those in the density profile. The convective derivative is

equal to: d=dt ¼ @t þ ðẑ �r/Þ:r ¼ @t þ vE:r where vE is

the E�B drift. The fields are decomposed into a perturba-

tion and a zonally averaged part: f ¼ �f ðx; tÞ þ ~f ðx; y; z; tÞ,
where the averaging is preformed over the directions of

symmetry y and z

hf i ¼ �f ¼ 1

LyLz

ðLy

0

ðLz

0

f dydz:

Equations for the density and vorticity fluctuations are writ-

ten as

@t~n þ ~vx:r�n ¼ � v2
th

�ei
r2
kð~/ � ~nÞ � ~/; ~n

� �
þ D0r2~n; (2a)

@tr2 ~/ þ ~vx:rr2/ ¼ � v2
th

�ei
r2
kð~/ � ~nÞ � ~/;r2 ~/

� �
þ l0r2ðr2 ~/Þ: (2b)

Here, the mean flow shear r2/ in Eq. (2b) is self-generated

by the Reynolds stress h~vx~vyi and is driven by the DW inter-

actions. Based on the triad coupling, this internal shear

results from nonlinear energy transfer related, but not identi-

cal to, the inverse energy cascade in a 2D fluid. The nonlin-

ear advection terms are expressed as Poisson brackets:

ff ; gg ¼ @xf@yg� @yf@xg and represent spatial scattering of

the fluctuation energy.

In the Hasegawa-Wakatani (HW) system, the plasma

response and the character of the flow are mainly determined

by three parameters: the collisional diffusion coefficients D0

and l0, and the adiabaticity parameter a ¼ k2
z v

2
th=ð�eijxjÞ.

While D0 and l0 regulate the dissipation of energy at small

scales, a determines the efficiency of zonal flow production

and controls its mesoscopic response. Defined as the ratio

between the parallel diffusion rate and the drift frequency, a
controls the phase difference between ~/ and ~n, and thus the

transport. When a> 1, the plasma response is near adiabatic,
~/ and ~n are closely coupled, and ~n ’ ~/. The Hasegawa-

Wakatani system effectively reduces then to the Hasegawa-

Mima equation23 with a phase shift between ~n and ~/. In the

opposite limit however, a< 1, the plasma response is said to

be hydrodynamic. Equations (2a) and (2b) are then weakly

coupled, and the ~n dynamics resembles that of a passive sca-

lar. Moreover, the vorticity equation tends toward that for a

2D Navier-Stokes fluid.19

For a linear stability analysis of the HW equations, we

write the fluctuation fields as: ~f m ¼ dfmðxÞei½khyþkzz�xt	 with

x ¼ xr þ ijcmj. Here xr, jcmj; kh, and kz are the linear eigen-

frequency, the growth rate, the azimuthal, and the parallel

wavenumbers of the unstable mode, respectively. The drift

wave dispersion relation is then

x2 þ i
â

k2
?q

2
s

xð1þ k2
?q

2
s Þ � x?

� �
¼ 0; (3)

where x? ¼ khjvdj ¼ �khqscsr�n > 0 is the electron drift

frequency, and vd ¼ qscsr�n < 0 is the electron diamagnetic

drift velocity. The solution of Eq. (3) is given by
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x ¼ 1

2
�i

âð1þ k2
?q

2
s Þ

k2
?q

2
s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ix?â
k2
?q

2
s

� âð1þ k2
?q

2
s Þ

k2
?q

2
s

 !2
vuut

0
B@

1
CA:
(4)

This expression is simplified, according to the magnitude of

â=jxj, i.e., the magnitude of a. In the adiabatic limit: (a� 1

and â � jxj).
When the parallel diffusion rate k2

z v
2
th=�ei is larger than

both the drift frequency jxj and the electron diamagnetic fre-

quency jx?j, Eq. (4) reduces to

xadiabatic ¼
x?

1þ k2
?q

2
s

þ i
x?2k2

?q
2
s

â
: (5)

In the adiabatic limit, xr does not depend on â. However, the

growth rate jcmj is proportional to 1=â. For large â, the

growth rate is jcmj � 1, and the drift wave eigenfrequency is

simply written as

xadiabatic ’ xr ¼ x?ð1þ k2
?q

2
s Þ
�1: (6)

In the hydrodynamic limit: (a� 1 and â � jxj).
When the parallel diffusion rate k2

z v
2
th=�ei is much

smaller than jxj, the expression for the frequency reads

xhydrodynamic ’
1

2
�i

âð1þ k2
?q

2
s Þ

k2
?q

2
s

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
4iâx?

k2
?q

2
s

s0
@

1
A

’
ffiffiffiffiffiffiffiffiffiffiffiffi
x?â

2k2
?q

2
s

s
ð1þ iÞ: (7)

In this limit, the growth rate and the real part are both equal

to: xr ¼ jcmj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?â=2k2

?q
2
s

p
. In contrast to the adiabatic

limit, the contribution of jcmj cannot be neglected in the

expression for xhydrodynamic.

A comparison of Eqs. (6) and (7) shows that xadiabatic is

dominantly real, while xhydrodynamic involves a comparable

real and imaginary part. While the motion of the drift waves

is purely oscillatory in the adiabatic limit, in the hydrody-

namic limit, the dynamics of the perturbation resembles that

of a convective cell. This feature dictates the behavior of the

flow in the two plasma regimes.

III. REDUCED MODEL

A. The equations

In this section, a 1D reduced model that self-

consistently describes the evolution of turbulence and

plasma profiles is presented. The equations relating the time

and space evolution of the plasma mean density �n and mean

vorticity r2/ are obtained by averaging Eqs. (1a) and (1b)

over the directions of symmetry

@t�n ¼ �@xh~vx ~ni þ D0r2 �n; (8a)

@tr2/ ¼ �@xh~vxr2 ~/i � �inð�vy � �vnÞ þ l0r2r2/: (8b)

A neutral damping term proportional to the ion-neutral colli-

sion frequency �in / nn is added to the mean vorticity

equation. This term can be significant at the plasma edge. It

is a sink of energy transferred to larger scales and so damps

the zonal flows. The neutral friction can be dropped from the

mean vorticity equation if �in ! 0, i.e., for low neutral den-

sity nn.

In addition to Eqs. (8a) and (8b), we formulate an equation

for the fluctuation potential enstrophy e ¼ hð~n �r2 ~/Þ2=2i.
The HW system locally conserves the potential vorticity

defined as q ¼ n�r2/, up to viscosity and particle diffusiv-

ity. A linearized equation describing the time evolution of

the turbulent potential vorticity ~q ¼ ~n �r2 ~/ is obtained by

subtracting Eq. (2b) from Eq. (2a)

@~q

@t
þ ~vx:r�q ¼ � ~/; ~q

� �
þ l0r2q) dq

dt
¼ l0r2q; (9)

where q ¼ �q þ ~q, and l0 and D0 are assumed to be of the

same order. Equation (9) represents the conservation of the

total potential vorticity up to viscous dissipation. Therefore,

the potential enstrophy e ¼ h~q2i=2 ¼ hð~n �r2 ~/Þ2i=2 is

also conserved up to collisional diffusion. This can be shown

by multiplying Eq. (9) by ~q ¼ ~n �r2 ~/, and performing a

zonal integral. Detailed calculations can be found in Refs.

24–26. Here, we simply write the time evolution equation

for the potential enstrophy density e

@teþ @xCe ¼ �ðCn �PÞð@x �n � @xx�vyÞ � e3=2 þ P: (10)

In Eq. (10), Cn and P are the particle and vorticity flux,

respectively, while @x �n and @xx�vy are the mean density and

mean vorticity gradients, respectively. The turbulent poten-

tial enstrophy density flux Ce on the LHS represents the

mesoscopic spreading of turbulence due to the three wave

coupling. Note that Ce ¼ h~vxei is nominally third order in

fluctuation amplitude. It thus is equivalent to the spatial flux

of turbulence intensity—otherwise known as “turbulence

spreading.” The spreading flux Ce represents local scattering

of the fluctuation potential enstrophy density e. Turbulence

spreading enters here as a consequence of: (i) the fact that

the model conserves potential vorticity and thus potential

enstrophy, (ii) the fact that local potential enstrophy density

evolution is determined (in part) by the divergence of the

flux of local potential enstrophy. The potential enstrophy

density flux is written as: Ce ¼ �De@xe ¼ �l2mix

ffiffi
e
p
@xe, where

lmix ¼ ~vxsc is the turbulent mixing length and sc is the turbu-

lence correlation time. The first term on the RHS of Eq. (10)

accounts for direct mean flow-fluctuation coupling and con-

verts the mean potential enstrophy into fluctuation potential

enstrophy. This coupling term relates variations of the turbu-

lent potential enstrophy to those in the mean profile of �n and

�vy, via the particle flux Cn ¼ h~vx ~ni and the vorticity flux

P ¼ h~vxr2 ~/i. The second term on the RHS of Eq. (10)

represents the dissipation of fluctuation potential enstrophy

density at a rate
ffiffi
e
p

. This dissipation is due ultimately to the

collisional coefficients D0 and l0. Finally, the production

term P represents an input of the potential enstrophy due to

linear growth, driven by the mean profiles. It is proportional

to e and linear in cDW, the growth rate of the DW instability:

P ¼ cDWe. Dropping the neutral damping term from the
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vorticity equation, as well as the �… sign, we simplify the

notation by writing u ¼ r2/ to obtain

@tn ¼ �@xCn þ D0r2n; (11a)

@tu ¼ �@xPþ l0r2u; (11b)

@teþ @xCe ¼ �ðCn �PÞð@xn� @xuÞ � e3=2 þ P: (11c)

Written in 1D (in radius), this system models the evolution

of DW intensity and the formation of zonal flows in the

plasma. For this purpose, an expression for the mixing length

lmix is required.

One approach consists of considering a mixing length

that exhibits a turbulence suppression through the azimuthal

shear u ¼ rvy

lmix ¼
l0

1þ ðl0ruÞ2

e

� �d ; (12)

where d is a free parameter and l0 is an external dynamical

turbulence production scale length. Equation (12) exhibits a

decorrelation of the turbulent structures by the flow shear

u ¼ rvy:27 when the flow shear increases, the mixing length

decreases. When lmix is reduced, the production of potential

enstrophy e also drops, the mean profiles steepen, and a

closed feedback loop is obtained. In the particular case of

weak or collapsed flow shear, u ¼ rvy is small (u ¼ rvy

’ 0) so a constant mixing length lmix ’ l0 is appropriate.

This is a consequence of the absence of transport barrier

dynamics in the phenomena of interest.

IV. EXPRESSIONS FOR THE TURBULENT FLUXES

In addition to the expression for lmix, expressions for the

turbulent fluxes h~vx ~ni and h~vx~vyi are needed to close the

model and solve Eqs. (11a)–(11c). In this section, we use

quasi linear theory to calculate the expressions for the parti-

cle flux and vorticity flux.

A. The particle flux: h~n~vx i

To calculate the expression for the particle flux h~n~vxi,
we write the electron density fluctuation as ~n ¼ ~/ þ h,

where h is the deviation from the adiabatic response.

Plugging in Eq. (2a), we obtain

h ¼ x? � x
xþ iâ

~/; ~n ¼ ~/ þ h ¼ x? þ iâ
xþ iâ

� �
~/:

In the adiabatic limit, x ’ x? and the following relation

between ~n and ~/ is recovered: ~n ¼ ð1� iðx? � xÞ=âÞ~/
’ ~/.28 For ~vx ¼ �ikhqscsd/, the expression for the particle

flux h~n~vxi is

Cn ¼ �
ðâ þ jcmjÞ
jxþ iâj2

d ln n

dx
þ âxr

khqscsjxþ iâj2

" #
hdv2

xi

’ � ðâ þ jcmjÞ
jxþ iâj2

d ln n

dx
hdv2

xi ¼ �
D

n0

d�n

dx
: (13)

The particle diffusion coefficient is: D ¼ ½ðâ þ jcmjÞ=
jxþ iâj2	hdv2

xi. The expression for the particle diffusion

coefficient D depends on â and changes as the plasma passes

from the adiabatic to the hydrodynamic regime. We introduce

next the factor f that represents the fraction of the fluctuation

energy el2
mix which is in the kinetic energy of radial motion

hdv2
xi ¼ f el2

mix ¼
hdv2

xi
hdn2i þ hdv2

xi
el2mix: (14)

Using the expressions for ~n and ~vx, the expression for f is

equal to

f ¼ k2
?q2

s

x
 þ iâ
xþ iâ

				
				
2

þ k2
?q

2
s

¼

k2
?q

2
s

1þ k2
?q

2
s

; in the adiabatic regime

1

jx
=âj þ 1
; in the hydrodynamic regime:

8>>><
>>>:

(15)

In the adiabatic regime, the kinetic energy hdv2
xi is less than

hdn2i, and the electron total energy is mostly thermal/inter-

nal energy. Therefore, the factor f � 1. However, in the

hydrodynamic regime, the kinetic energy of the electrons

rises as compared to hdn2i, reflecting an increase in the

screening of ion diamagnetic oscillations such that f ! 1.

For small values of k2
?q

2
s � 1, the two limits of f are

f ! k2
?q

2
s ; in the adiabatic regime

f ! 1; in the hydrodynamic regime:




Finally, for purely adiabatic DWs, the relation hdv2
xi

’ k2
?q

2
s el

2
mix is recovered.

B. The vorticity flux: h~vx$2
?/i

In addition to Cn, we calculate the vorticity flux

P ¼ h~vxr2
?

~/i. This flux is related to the Reynolds force that

controls the relation between turbulence and zonal flows via

the Taylor identity: �@xh~vx~vyi ¼ h~vxr2
?

~/i. The Taylor iden-

tity directly links the zonal flow momentum conservation to

potential enstrophy balance.29 To calculate P, we use the

vorticity equation and drop the neutral drag term for simplic-

ity. The vorticity flux then follows as:

P ¼
X

m

� k2
hq

2
s c2

s jcmj
jxj2

j~/2j d
2�vy

dx2

þ 2Re
khqscsâ

x
x? � x
xþ iâ

� �
j~/j2

� �

¼ �vy

dhr2
?/i

dx
þPres

¼ �vy

d2�vy

dx2
þPres; (16)

The first term of Eq. (16) represents the diffusive flux, while

the second term is the residual stress, i.e., the non-diffusive

flux driven by rn. The turbulent viscosity vy relating the

062306-5 Hajjar, Diamond, and Malkov Phys. Plasmas 25, 062306 (2018)



mean vorticity gradient dðr�vyÞ=dx to the vorticity flux P is

equal to

vy ¼
X

m

k2
hq

2
s c2

s jcmj
jxj2

j~/2j ¼ jcmjhdv2
xi

jxj2
: (17)

Here, vy depends on the adiabaticity parameter, as both jcmj
and jxj are â-dependent. The residual stress Pres resulting

from coupling between the density and vorticity profiles is

equal to

Pres ¼ khqscsxciâ½ðxrÞ2ðx? � xrÞ � jcmj2ðxr þ x?Þ � x?âjcmj	
jxj2 � jxþ iâj2

h~/2i: (18)

Pres converts the driving particle flux into zonal (azimuthal)

flow and can accelerate �vy from rest. Similar to the expres-

sion for vy, Pres varies as â changes, affecting thereby the

character of the flow in both plasma limits. In the adiabatic

limit, an examination of the expression for Pres shows that

the residual stress is inversely proportional to â, i.e.,

Pres
adia / 1=â. In the hydrodynamic limit however, the resid-

ual stress is directly proportional to
ffiffiffî
a
p

, i.e., Pres
hydro /

ffiffiffî
a
p

,

for a� 1.

C. Fluxes and Reynolds work in adiabatic and
hydrodynamic limits

The expressions for the particle and vorticity flux can be

simplified depending on the value of â, i.e., depending on

the electron plasma response.

In the adiabatic limit: (â � jxj).
In this limit, a� 1. The growth rate jcmj ’ 1=a� 1,

and jxj2 ’ ðxrÞ2 ¼ ½x?=ð1þ k2
?q

2
s Þ	

2
. The expressions for

the particle and vorticity fluxes in the adiabatic limit are

n0Cn ¼ �
hdv2

xi
â

d�n

dx
’ � el2

mix

â
d�n

dx
; (19a)

P ¼ � jcmjhdv2
xi

jxj2
d2�vy

dx2
� xcihdv2

xi
â

d�n

dx

k2
?q

2
s

1þ k2
?q

2
s

 !

’ � el2mix

â
d2�vy

dx2
� xciel2

mix

â
d�n

dx
: (19b)

Here, hdv2
xiadiabatic ¼ fadiabaticel2mix ¼ k2

?q
2
s el

2
mix=ð1þ k2

?q
2
s Þ.

Scalings of the particle flux Cn, the turbulent viscosity vy and

the residual stress Pres in the adiabatic limit are

Cn ’ �ðel2
mix=âÞr�n; (20a)

vy ’ el2
mix=â; (20b)

Pres ’ �ðxciel
2
mix=âÞr�n: (20c)

Here, Cn, vy, and Pres are all inversely proportional to a.

In addition, both Cn and Pres are proportional to rn. The

expression for the Reynolds power density PRe that repre-

sents the power exerted by the turbulence on the flow �vy

is obtained by multiplying the Reynolds force FRe

¼ �@xh~vx~vyi by the azimuthal flow �vy. In the adiabatic

limit, PRe is equal to

PRe ¼ �@xh~vx~vyi�vy ’ � e
â

d2�vy

dx2
� xcie

â
d�n

dx

� �
�vyl2

mix: (21)

In the (likely case of) absence of an external azimuthal

momentum source, and for vanishing Reynolds power den-

sity PRe¼ 0, the mean vorticity gradient is independent of â
and is given by

d2�vy

dx2
¼ Pres

vy

¼ �xci
d�n

dx
: (22)

In the hydrodynamic limit: (â � jxj) For xr ¼ jcmj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?â=ð2k2

?q
2
s Þ

p
, expressions for the particle and vorticity

fluxes are equal to

n0Cn ’ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
?q

2
s

2khqscs

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd�n=dxj

â

r
hdv2

xi ’ �
el2mixffiffiffiffiffiffiffiffiffiffiffi
âjx?j

p d�n

dx
(23a)

P ¼ � jcmjhdv2
xi

jxj2
d2�vy

dx2
� xcihdv2

xi
khqscs

:

ffiffiffiffiffiffiffiffiffiffi
k2
?q

2
s

2

r ffiffiffiffiffiffiffiffi
â
jx?j

s

’ � el2
mixffiffiffiffiffiffiffiffiffiffiffi

âjx?j
p d2�vy

dx2
� xcie

ffiffiffî
a
p

l2mix

jx?j3=2

d�n

dx
: (23b)

Here, we used hdv2
xihydrodynamic ¼ fhydrodynamicel2

mix ¼ el2
mix=

½jx
=âj þ 1	 < el2mix. Scalings of the turbulent fluxes are then

Cn ’ � el2
mix=

ffiffiffiffiffiffiffiffiffiffiffi
âjx?j

p �
r�n; (24a)

vy ’ el2
mix=

ffiffiffiffiffiffiffiffiffiffiffiffi
âjr�nj

p
; (24b)

Pres ’ � xcie
ffiffiffî
a
p

l2
mix=jx?j3=2

 �
r�n: (24c)

While Cn and vy are inversely proportional to
ffiffiffî
a
p

in the

hydrodynamic limit, the residual stress Pres scales propor-

tionally with
ffiffiffî
a
p

. We note here that in the hydrodynamic

limit, the particle flux Chydro
n is proportional to

ffiffiffiffiffiffiffiffiffiffi
jr�nj

p
, and

the residual stress Pres
hydro is proportional to 1=

ffiffiffiffiffiffiffiffiffiffi
jr�nj

p
. Such

superficially unusual scalings with jr�nj result from

neglecting the contributions of the diffusive damping

related to D0 and l0 in the density and vorticity equations,

while performing the linear analysis. Obviously, these

should not be extrapolated to regimes of very weak rn
drive. In the hydrodynamic limit, the Reynolds power den-

sity is equal to
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PRe ¼ �@xh~vx~vyi�vy

’ � effiffiffiffiffiffiffiffiffiffiffiffi
âjr�nj

p d2�vy

dx2
� xcie

ffiffiffiffiffiffiffiffiffiffi
â
jr�nj

s0
@

1
A�vyl2mix; (25)

and the vorticity gradient for PRe¼ 0 is directly proportional

to â and is equal to

d2�vy

dx2
¼ �xciâ

jx?j
d�n

dx
: (26)

V. SIMPLIFICATION BY SLAVING: A PREDATOR-PREY
MODEL

When the eddy turnover time sc ¼ lmix=~vx is smaller

than the particle confinement time ½Dr2�n=�n	�1
, the model

can be reduced to a 2-field predator-prey model that evolves

the preys (�n) and predators (�vy) according to Eqs. (11a) and

(11b). Clearly, these predators do not exist without the prey.

A simplification of the previous model is achieved by slaving

the expression for e to the mean profiles, and solving the

equations for �n and �vy. For slaved turbulence, both potential

enstrophy spreading and potential enstrophy production are

dropped from the e equation because the eddy turnover time

is shorter than the confinement time. The potential enstrophy

equation then reduces to the balance

�ðCn �PÞð@xn� @xuÞ � e3=2 ¼ 0: (27)

In the adiabatic limit: using Eqs. (20a)–(20c), the

expression for the potential enstrophy reduces to

ffiffi
e
p

adia ¼
x2

cil
2
mix

â
dn

dx
� du

dx

� �2

� xci
dn

dx

dn

dx
� du

dx

� �" #
: (28)

The second term on the RHS of Eq. (28) arises from the con-

tribution of the residual stress Pres
adia. For a constant mixing

length,
ffiffi
e
p

adia is proportional to 1=â.

In the hydrodynamic limit: the expression for the turbu-

lent potential enstrophy is obtained from Eqs. (24a)–(24c) as

ffiffi
e
p

hydro ¼
x2

cil
2
mixffiffiffiffiffiffiffiffiffiffiffi
jx?jâ

p dn

dx
� du

dx

� �2

/ 1ffiffiffî
a
p : (29)

Here,
ffiffi
e
p

hydro is proportional to 1=
ffiffiffî
a
p

. Note that in the

hydrodynamic limit, the contribution of the residual stress to

the expression for e vanishes, as Pres
hydro /

ffiffiffî
a
p
! 0. A com-

parison of Eqs. (28) and (29) shows that, in the adiabatic

limit, the potential enstrophy is low, while e is enhanced in

the hydrodynamic limit. This is one reason why mesoscopic

zonal flows are strong in the former case, while a state of

enhanced turbulence dominates in the hydrodynamic limit.

In summary, the equations of the simplified model in the adi-

abatic and hydrodynamic limits are

@tn ¼ �@xCn þ D0r2n; (30a)

@tu ¼ �@xPþ l0r2u: (30b)

The expressions for the particle and vorticity fluxes are

Cadia
n ¼ � el2

mix

â
dn

dx
; (31a)

Padia ¼ � el2
mix

â
du

dx
� xciel2mix

â
dn

dx
; (31b)

ffiffi
e
p

adia ¼
l2
mix

â
dn

dx
� du

dx

� �2

� xci
dn

dx

dn

dx
� du

dx

� �" #
; (31c)

in the adiabatic limit, and

Chydro
n ¼ � el2

mixffiffiffiffiffiffiffiffiffiffiffi
âjx?j

p dn

dx
; (32a)

Phydro ¼ � el2mixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
âjdn=dxj

p du

dx
� xcie

ffiffiffî
a
p

l2mix

jx?j3=2

dn

dx
; (32b)

ffiffi
e
p

hydro ¼
l2
mixffiffiffiffiffiffiffiffiffiffiffi
jx?jâ

p dn

dx
� du

dx

� �2

; (32c)

in the hydrodynamic limit.

An examination of the turbulence suppression criterion

RDT previously introduced in Ref. 24 as

RDT ¼

ð
@xh~vxr2 ~/ir�vydx

�
ð
h~n~vxidx

; (33)

shows that RDT decreases in the hydrodynamic limit. Here,

RDT is interpreted as the ratio of the turbulent enstrophy

destruction rate 1=stransfer due to coupling to the zonal flow

through the vorticity flux or the Reynolds stress, as compared

the turbulent enstrophy production rate 1=srelax due to the

relaxation of the density gradient. In the hydrodynamic limit,

1=stransfer decreases because zonal flow production weakens.

VI. FATE OF ZONAL FLOWS IN THE HYDRODYNAMIC
LIMIT a� 1

Numerical studies of the evolution of resistive DW tur-

bulence in the HW model show an enhancement of turbu-

lence and a collapse of the zonal flows for hydrodynamic

electrons.18 As a decreases, the ratio of the kinetic energy of

the zonal flow (F � 1=2
Ð
ð@h/i=@xÞ2dxdy) to the total

kinetic energy (Ek � 1=2
Ð
jr/j2dxdy) decreases, showing a

transition of the plasma to a turbulence dominated state. In

other words, when a drops below unity, zonal flows collapse

and turbulent fluctuations are enhanced. To explain these

observations, we present physical pictures that illustrate the

sequence of events leading to the enhancement of turbulence

and to the collapse of the shear layer in the hydrodynamic

electron limit.

A. Physical picture: Energy-momentum flux physics

A useful insight into why zonal flow production is

weaker in the hydrodynamic regime than in the adiabatic

limit may be gleaned from the wave dispersion relation. In

the adiabatic regime, the standard drift wave dispersion rela-

tion directly links radial propagation (related to group
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velocity) to Reynolds stress h~vx~vyi. In this limit, jxrj � jcmj,
suggesting the range of wave propagation is large. The

expression for the Reynolds stress is

h~vx~vyi ¼
X

k

ikrikh
c2

B2
j~/kj2 ¼ �

X
k

krkh
c2

B2
j~/kj2; (34)

where kr and kh are the radial and azimuthal wavenumbers,

respectively. The wave energy density flux hvgrei is obtained

by multiplying the group velocity vgr ¼ �2q2
s krkhvd=

ð1þ k2
?q

2
s Þ

2
by the energy

hvgrei ¼
X

k

�2q2
s

krkhvd

ð1þ k2
?q

2
s Þ

2
� ð1þ k2

?q
2
s Þ

e~/
Te

 !2

q2
s c2

s

2
;

(35a)

¼
X

k

�q4
s c2

s

e~/
Te

 !2

krkhvd

1þ k2
?q

2
s

: (35b)

With the electron diamagnetic velocity vd < 0, and the group

velocity vgr> 0, the correlator krkh must be positive. This is

to satisfy the causality condition that waves (for r > r0) be

outgoing from the region of excitation at r ’ r0. The

Reynolds stress h~vx~vyi is thus< 0, while the energy flux

hvgrei is >0. The causality relation implies a counter flow

spin-up, suggesting that for outgoing wave energy flux, there

exists an incoming wave momentum flux, as shown in Fig. 1.

Note this depends on only the most basic aspects of the drift

wave frequency.

In the hydrodynamic regime, however, the link of wave

energy flux to Reynolds stress is broken. The momentum

flux is still given by Eq. (34), but the group velocity vgr is

vgr ¼
@xr

hydro

@kr
¼ � kr

k2
?

xr
hydro:

Note here that causality has no implication for hkhkri, and

neither for the Reynolds stress, since vgr does not scale

directly with kh (the wavenumber in the direction of symme-

try). In the hydrodynamic limit, there is no causality con-

straint on the direction of eddy tilt, so the familiar tilt and

stretch mechanism in not effective. Moreover, the waves

have jxrj ¼ jcmj, suggesting the limited range of

propagation.

B. Scalings of transport fluxes with a

When the adiabaticity parameter a decreases below

unity, the system passes from the adiabatic to the hydrody-

namic regime. According to the scalings of Eqs. (20) and

(24), the particle flux scaling changes from Cadia / 1=a with

a > 1 to Chydro /
ffiffiffiffiffiffiffiffi
1=a

p
with a < 1. The turbulent diffusiv-

ity vy that relates the vorticity flux to the vorticity gradient

also exhibits the same scaling. The residual stress on the

other hand drops from Pres
adia / 1=a to Pres

hydro /
ffiffiffi
a
p

. Scalings

of the transport fluxes are summarized in Table I. An inter-

pretation of the analytical results shows that the Reynolds

power (which generates the zonal flow underlying

suppression) drops with a. In the absence of external

momentum sources and for turbulence, the diffusive vorticity

flux balances the residual stress. The mean vorticity gradient

shown in Fig. 2 then equals

�vy

d2�vy

dx2
þPres ¼ 0) dr�vy

dx
¼ Pres

vy

: (36)

Figure 2 explains the significance of the vorticity gradient as

a measure of the net strength of the shear layer. In the adia-

batic limit, the ratio between the residual stress and the tur-

bulent viscosity is independent of a. In the hydrodynamic

limit, Pres=vy is directly proportional to a. As the plasma

transitions from the adiabatic to the hydrodynamic regime,

the residual stress Pres weakens, while the turbulent diffusiv-

ity vy increases. As a result, the ratio Pres=vy—which indi-

cates the plasma capacity to produce mesoscopic flows—

drops. When the plasma production of zonal flows drops,

TABLE I. Scalings of the turbulent enstrophy e, transport fluxes, and vortic-

ity gradient with a in both adiabatic and hydrodynamic regimes.

Plasma response Adiabatic Hydrodynamic

a� 1 a� 1

Turbulent enstrophy
ffiffi
e
p ffiffi

e
p
/ 1=a

ffiffi
e
p
/ 1=

ffiffiffi
a
p

Particle flux Equation (20a) Equation (24a)

C C / 1=a C / 1=
ffiffiffi
a
p

Turbulent viscosity Equation (20b) Equation (24b)

vy vy / 1=a vy / 1=
ffiffiffi
a
p

Residual stress Equation (20c) Equation (24c)

Pres Pres / �1=a Pres / �
ffiffiffi
a
p

Pres

vy

¼ ðxcir�nÞ� a
jx?j

� �0 a
jx?j

� �

FIG. 2. A jump in the flow shear (in blue) over a scale length l is equivalent

to a vorticity gradient on that scale.
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turbulence is not effectively regulated and anomalous trans-

port increases.

C. Potential vorticity mixing and zonal shear collapse

It is useful to examine the flow generation in the adia-

batic and hydrodynamic regimes from the perspective of

potential vorticity (PV) dynamics. The key concept here is

that zonal flows are formed as a consequence of PV mixing,3

which in a system with mean inhomogeneity necessitates

trade-offs between mean and fluctuating PV. The classic

example follows from the observation that for a rotating

flow, the total vorticity: ~x þ 2~X is frozen into the fluid. If
~X ¼ ~XðxÞ changes, (due, say, to a variation in the axis of

rotation relative to the plane of motion), a displacement of a

mean vortex element in latitude forces a conversion of plane-

tary vorticity ð�2~XÞ to local flow vorticity ð�~xÞ, in order

to conserve total PV. This produces a change in vorticity,

while conserving total PV. This reasoning is the underpin-

ning of the b plane model, for which the potential vorticity

q ¼ r2
?/þ by;

is conserved. That statement yields the familiar governing

equation, which is

@tr2
?/þr?/� ẑ:r?ðr2

?/Þ ¼ �bVy: (37)

In the Hasegawa-Wakatani system, the conserved PV is:

ln ðnÞ � r2/ which may be expanded to

q ¼ ln ðn0ðxÞÞ þ
~n

n0

� q2
sr2 jej/

Te

� �
:

Since ~n=n0 ¼ jej~/=Te þ h, it follows that

q ¼ ln ðn0ðxÞÞ þ
jej~/
Te
þ h� q2

sr2 jej/
Te

� �
;

so that Cq, the PV flux, is equal to

Cq ¼ h~vxhi � q2
s ~vxr2

?
jej~/
Te

 !* +
: (38)

Observe that the adiabatic part of the density perturbation

makes no contribution to net PV flux or mixing. In the HW

system, the displacement of a mean density element (analo-

gous to the displacement of an element of planetary vorticity

as shown in Fig. 3) induces a particle flux and a Reynolds

force (from the vorticity flux), which drives a zonal flow.

The latter follows from Taylor identity, assuming poloidal

symmetry. Now in the adiabatic limit, density and vorticity

fluctuations are tightly coupled. Indeed, both particle and

vorticity evolution scale with a. Thus, it is not surprising that

both particle flux and residual stress (i.e., the non-viscous

component of the Reynolds force) scale identically (�1=a),

and so zonal flows are robust. In the adiabatic regime, the

particle flux and the vorticity flux support the PV flux.

However, in the hydrodynamic regime, coupling of particle

and PV fluctuations is weak [�OðaÞ with a < 1], so the

respective fluxes can decouple. The PV flux is supported pri-

marily by the particle flux Cn � 1=
ffiffiffi
a
p

, while the residual

stress Pres �
ffiffiffi
a
p

is insignificant, with a� 1. Thus, the non-

diffusive Reynolds force drops with a, and so does flow pro-

duction. Finally, the zonal vorticity gradient, an indication of

the flow production, is proportional to a, suggesting that zonal

flows and turbulence regulation are weak in the hydrodynamic

regime. This is consistent with the findings of several numeri-

cal simulations, which conclude that zonal flows are robust

for adiabatic electrons, but disappear in the hydrodynamic

regime.17–19 PV mixing (resulting from convective cell insta-

bility) persists in the hydrodynamic regime, but it is supported

primarily by the particle flux, not vorticity transport.

VII. RELEVANCE TO DENSITY LIMIT nG

The Greenwald density limit nG is an operational bound

on the plasma density and pressure. It represents the maxi-

mum attainable density before the plasma develops strong

disruptions and MHD activity.8,9 Experiments in various

toroidal devices6 including a recent experiment in the HL-

2A tokamak7 indicate a reduction of the edge shear flow

layer and a strong enhancement of turbulent particle trans-

port as �n ! nG. The shearing rate of the mean E�B flow

xsh ¼ rvh drops, and the turbulent Reynolds power collap-

ses in those ohmic L-mode discharges approaching nG. In

addition, both the core plasma density and the edge turbulent

particle flux h~vx ~ni increase with �n. Meanwhile, the cross-

correlation between the velocity and the density fluctuations

grows substantially inside the separatrix. The core plasma

temperature Te on the other hand decreases with �n. Most

importantly, the adiabaticity parameter a drops from 3 to 0.5

as �n approaches nG.
7 Note that in this particular HL-2A

experiment, the plasma b ¼ 2l0pe=B2 was very low, in the

range: 0:01 < b < 0:02.

The aforementioned experimental findings can be inter-

preted according to the scalings of Sec. VI. When the local

edge plasma density increases, the adiabaticity parameter

að/ T2
e=�nÞ decreases below unity, thereby triggering a

plasma transition from the adiabatic to the hydrodynamic

drift wave regime. According to the scalings of Sec. VI, this

transition is associated with an increase in the turbulent

particle flux and turbulence. Consistent with this, the mean

vorticity gradient dr�vy=dx ¼ Pres=vy drops. The production

of zonal flows thus declines, so turbulence is no longer

FIG. 3. Analogy of PV conservation in geostrophic waves and drift waves:

(a) change in local vorticity ~x of a fluid element between h1 and h2 forces a

flow generation, (b) density variation along the rn line from position 1 to

position 2 triggers a change in the flow (i.e., vorticity) so to conserve q.

062306-9 Hajjar, Diamond, and Malkov Phys. Plasmas 25, 062306 (2018)



regulated effectively. Particle transport increases. For colli-

sional drift waves, so does the electron thermal diffusivity, as

particle and heat losses are comparable for that system. This

need not be the case of Trapped Electron Modes (TEM), Ion

Temperature Gradient (ITG), and other modes relevant to

lower collisionality regimes. Cooling of the edge plasma is

triggered. For constant pressure pe (i.e., time scales long com-

pared to a sound transit time), this leads to further increase in

the density �n. A feedback loop between �n and Te is thus

formed when a drops below unity. This scenario is summa-

rized in the upper feedback loop in Fig. 4. We note that this

scenario for the density limit does not necessarily require a

MARFE or a disruption. It hinges only upon a change in the

turbulence self regulation and particle transport for a
decreases from a > 1 to a < 1. In addition, a path for the

development of MHD activity is suggested. We suggest that

such development can be promoted by turbulence spreading,

which extends the region of degraded confinement inward

from the edge, beyond the zone of initial zonal flow collapse.

We propose that when the turbulence spreads inward, the tem-

perature gradient will soften, causing the immediately adja-

cent rT to steepen. The resistivity then increases, and the

adjacent rJ also steepens, possibly triggering MHD activity.

Note however, that this is simply a “scenario.” Further work

is needed in order to realize and validate it. And surely other

scenarios, which link the increase in particle transport as

�n=nG ! 1 to MHD and disruptions, are possible.

This interpretation relies on the decrease in a below

unity as the trigger for the drop in zonal flow production.

Such an interpretation does not require appeal to zonal flow

damping effects, associated with collisionality, charge

exchange, etc. Most importantly, in contrast to Ref. 13,

which postulates the surge in turbulence as due to yet another

linear instability—such as the resistive ballooning mode—

the current approach explains how variations of a affect the

mean and turbulent plasma profiles within the context of

generic drift wave theory. This mechanism is applicable to

plasmas at low b, like that of the HL-2A experiment,7 where

resistive ballooning effects are not relevant.

VIII. CONCLUSION

This paper presents a theory of the collapse of a zonal

shear layer in the hydrodynamic electron limit. It elucidates

the evolution of the plasma flow and turbulence, as the elec-

tron response passes from the adiabatic to the hydrodynamic

FIG. 4. Profile evolution in the hydro-

dynamic limit. The diagram shows a

feedback loop between the density and

temperature via variations of a. A

potential path for the development of

MHD modes involving turbulence

spreading is also indicated. Inward tur-

bulence spreading and steepening of

adjacent rT from a state ‹ (in blue) to

a state › (in red) are shown on the left.
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limit. In particular, this paper describes the variation of the

turbulent fluxes and mean profiles with the adiabaticity

parameter a ¼ k2
z v

2
th=ð�eijxjÞ. The key result of this paper is

its explanation of why the zonal shear layer weakens and dis-

appears when the adiabaticity parameter drops below unity,

and so allows an enhanced level of turbulence. Moreover,

this paper highlights the importance of the ZF collapse in the

hydrodynamic limit (a < 1) as a key mechanism and a gen-

eral scenario for turbulence enhancement, even for plasmas

with low b. We give a theoretical interpretation of the exper-

imental and numerical results obtained in the hydrodynamic

plasma limit. Findings of this paper are applicable to low b
density limit experiments, where a weakening of the edge

shear layer and a degradation of the thermal confinement

result when the plasma density increases sufficiently so that

a < 1.

This paper presents a 1D reduced model that self-

consistently describes the spatiotemporal evolution of the

mean density �n and the azimuthal flow �vy, as well as the

potential enstrophy e ¼ hð~n � ~uÞ2i=2. The model is derived

from the Hasegawa-Wakatani system for turbulent drift

waves and exploits conservation of PV to constrain the rela-

tion between drift waves and zonal flows. Key results of this

paper are:

1. The particle flux Cn and the vorticity flux P are calculated

as: Cn ¼ �Dr�n and P ¼ �vyr2�vy þPres. The vorticity

flux is related to the Reynolds force via the Taylor iden-

tity. Quasi-linear analysis shows that the scalings of Cn

and P with a change as the plasma passes from the adia-

batic to the hydrodynamic limit. These scalings are sum-

marized in Table I and reveal the enhancement of the

particle flux Cn and the turbulent viscosity vy as a
decreases. The residual stress Pres on the other hand drops

with a for a� 1 as Pres
hydro /

ffiffiffi
a
p

.

2. Variations in the turbulent fluxes are responsible for the

change in the mesoscopic flow dynamics. When a drops,

the mean vorticity gradient dðr�vyÞ=dx ¼ Pres=vy—which

characterizes the zonal flow and the state of turbulence in

the plasma—also drops. In the adiabatic limit, the mean

vorticity gradient is independent of a. However, in the

hydrodynamic limit, Pres=vy is proportional to a, indicat-

ing weakened production of zonal flows for lower a. As

the production of zonal flows decreases, the mechanism

of self-regulation fails, and the turbulence intensity rises.

3. The findings of this paper illuminate several aspects of

the physics of the density limit. When the plasma density

increases, the adiabaticity parameter decreases

(a / T2
e=�n). According to the scalings derived in Sec. VI,

a decrease in the mean vorticity gradient results when �n
increases such that a� 1. In this case, the efficiency of
the zonal flow production drops. Thermal and particle

losses due to collisional drift waves thus increase, and the

cross phase between the velocity and the density fluctua-

tions also increases.7 Cooling of the plasma edge is then

triggered, causing Te to drop further. Feedback between �n
and Te occurs.

4. Important results in this paper are the expressions for the

fluxes C and P. These expressions can be used to model

the gradual plasma transition from the adiabatic to the

hydrodynamic limit. While previous work simply pre-

sented numerical observations of the enhancement of tur-

bulence,17,18 no previous works presented a continuous

transition from one limit to the other.

5. This paper gives a simple physical picture of why ZF pro-

duction drops in the hydrodynamic electron regime. There

the dispersion relation is xhydro
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x?â=ð2k2

?q
2
s Þ

p
, so vgr

¼ �krxr
hydro=k2

?. These are in contrast to the adiabatic

case, for which xadia
r ¼ x?ð1þ k2

?q
2
s Þ
�1

and vgr

¼ �2q2
s krkhvd=ð1þ k2

?q
2
s Þ

2
. Thus, in the hydrodynamic

regime, the condition of outgoing waves (vgr > 0) does

not constrain the Reynolds stress h~vx~vyi ’ hkrkhi, thus

breaking the direct proportionality between wave propa-

gation and Reynolds stress. This link is fundamental to

ZF production by DWs.

6. This paper explains why turbulence is enhanced in the

hydrodynamic limit and ascertains the physics of the

Reynolds stress in regulating the drift wave—zonal flow

relation. We show that PV mixing in the hydrodynamic

electron limit is supported by the particle flux, i.e.,

h~vx ~qi ¼ h~vxhi � h~vxr2 ~/i ’ h~vxhi. The vorticity flux

drops and the particle flux rises with a in this regime. This

explains why zonal flow formation is weak in the hydro-

dynamic regime.

At this point, it is necessary to add a brief answer to the

inevitable questions: “What of the H-mode? Why doesn’t the

system transit to the H-mode when zonal flows are

produced?.” The answer to the latter is simple—the shear

flows are not strong enough, for L-modes levels of edge heat

flux. As the heat flux increases to the critical value for transi-

tion, the zonal shears become strong enough to induce a

strong reduction in turbulence or turbulence collapse,30,31

thus allowing rpi to steepen and produce a mean E�B
shear which “locks in” the H-mode trasnport barrier. The

answer to the former is that the considerations of this paper

(and numerous related works) suggest that the states of edge

turbulence and particle transport and profiles may be classi-

fied as:

(i) a “normal,” L-mode state where turbulence generated

secondary modes (i.e., ZFs and GAMs) regulate tur-

bulence and transport, but do not suppress them.

(ii) a H-mode state where the mean E � B shear, largely

set by rhpii, is strong enough to suppress turbulence

and turbulent transport. In H-mode, secondary modes

are of little relevance, since primary mode levels are

weak.

(iii) a state of degraded particle confinement, associated

with the density limit. This state evolves from L-

mode, and is accessed by reduction in secondary

zonal flow production when a < 1. In this state, turbu-

lence and particle transport are large. Experiments

suggest this state of degraded particle confinement

can be accessed from H-mode only following an H !
L back transition.9 Table II summarizes this discus-

sion. Finally, we note in passing that this classifica-

tion of states does not include the improved mode
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(I-mode).32 This is because the understanding of I-
mode physics is still developing. We note that the

“improvement” in I-mode is in thermal confinement,

but not particle confinement. Thus, for the purpose of

this discussion centered on particle transport, the I-
mode can be lumped into the L-mode category.

Future work includes numerical investigation of the evo-

lution of a plasma transition from one limit to the other.

Moreover, it would be instructive to investigate experimen-

tally the causality relation between the drop in a and the

drop in ZF production. In particular, it is useful to determine

which occurs first. This would probe the predictions of the

theory. One suggestion would be to verify the decrease in

the calculated total Reynolds work, as �n=nG is raised. When

the total Reynolds work decreases, energy transfer to the

mean flow structures drops, so the fluctuations should grow.

Another possible experiment consists of increasing the

plasma density �n and temperature Te, such that the adiabatic-

ity parameter a / T2
e=�n remains constant (assuming the var-

iations of the Coulomb logarithm are negligible). According

to the theory presented above, no collapse of the zonal shear

layer should be observed, simply because a does not change.

One can also investigate the contribution of collisional

damping effects by comparing the response with and without

the damping factor. This is particularly useful to confirm the

pivotal role of the Reynolds stress in the collapse of the

zonal shear layer at the density limit. Additional work also

should include investigation of the role of high edge rp and

high b values in H-modes in the enhancement of turbulence

and profile evolution in density limit experiments.
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